organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Hua Huo,^a Shan Gao,^a Hui Zhao,^a Jing-Gui Zhao,^a Sharifuddin M. Zain^b and Seik Weng Ng^b*

^aCollege of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.102 Data-to-parameter ratio = 9.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Methoxysalicylaldehyde 4-methoxybenzoylhydrazone monohydrate

The title compound, $C_{16}H_{16}N_2O_4$ ·H₂O, crystallizes as a monohydrate in which the water molecule forms bifurcated hydrogen bonds to the hydroxyl and methoxy O atoms of the methoxysalicyldehyde portion of the Schiff base. The molecule is approximately planar; hydrogen-bonding interactions involving the amino group and the water molecule give rise to a layer structure.

Received 2 August 2004 Accepted 9 August 2004 Online 13 August 2004

Comment

Hydroxy-substituted benzaldehyde reagents used for condensation with benzoylhydrazine afford Schiff base hydrazones which can function as terdentate ligands towards a number of metal cations (Gao *et al.*, 1998; Liu & Gao, 1998; Chen *et al.*, 1999). In our studies on the title hydrazone, (I), we have isolated V⁵⁺ and Fe³⁺ complexes (Huo, Gao, Liu, Li & Ng, 2004; Huo, Gao, Liu, Li, Zhao & Zhao *et al.*, 2004; Huo, Gao, Liu, Zhao & Ng, 2004) in which the deprotonated 3methoxysalicylaldehyde 4-methoxybenzoylhydrazone entity chelates in this manner. This hydrazone crystallizes as a monohydrate (Fig. 1).

The hydrazone is essentially flat; the aromatic ring (C10–C15) makes a dihedral angle of $5.1 (5)^{\circ}$ with the C9/N2/O3 fragment. In the unsubstituted compound, *viz*. benzaldehyde benzoylhydrazone, the molecule is twisted with the dihedral angle between the corresponding ring and fragment being

Figure 1

ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Li-Hua Huo et al. • C₁₆H₁₆N₂O₄·H₂O

01538

 23.6° (Litvinov *et al.*, 1991). This feature is also noted in salicyldehydyde benzoylhydrazone (dihedral angle = 21.5° ; Lyubchova *et al.*, 1995). As geometry optimizations on (I) also implicate a twisted conformation, the observed planarity can be attributed to water molecules of crystallization, whose presence ensures that the molecules can be packed efficiently in a layer motif (Fig. 2). One of its H atoms engages in binding to two O atoms simultaneously (Table 2).

Experimental

An ethanol solution (25 ml) of 3-methoxysalicylaldehyde (6.04 g, 0.04 mol) was added dropwise to an ethanol solution (100 ml) of 4-methoxybenzoylhydrazine (6.44 g, 0.04 mol). The mixture was refluxed for a hour to complete the condensation. Yellow crystals (m.p. 442–444 K) were isolated from the filtered solution after a few days. Analysis calculated for $C_{16}H_{18}N_2O_5$: C 60.37, H 5.70, N 8.80%; found: C 60.54, H 5.95, N 8.61%.

Mo $K\alpha$ radiation Cell parameters from 14318

reflections $\theta = 3.0-27.5^{\circ}$

 $\mu=0.10~\mathrm{mm}^{-1}$

T = 295 (2) KPrism, yellow $0.39 \times 0.26 \times 0.21 \text{ mm}$

 $R_{\rm int}=0.038$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -6 \rightarrow 5$

 $k = -16 \rightarrow 16$

 $l = -31 \rightarrow 31$

2073 independent reflections

1784 reflections with $I > 2\sigma(I)$

Crystal data

$C_{16}H_{16}N_2O_4{\cdot}H_2O$
$M_r = 318.32$
Orthorhombic, P212121
a = 5.013 (1) Å
b = 12.733 (3) Å
c = 24.096(5) Å
$V = 1537.9 (5) \text{ Å}^3$
Z = 4
$D_{\rm r} = 1.375 {\rm Mg} {\rm m}^{-3}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.830, T_{\max} = 0.979$ 14735 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0563P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.2354P]
$wR(F^2) = 0.102$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
2073 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ \AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.348 (3)	N1-N2	1.382 (3)
O2-C2	1.373 (3)	N1-C7	1.284 (3)
O2-C8	1.426 (3)	N2-C9	1.353 (3)
O3-C9	1.228 (3)	C6-C7	1.458 (3)
O4-C13	1.367 (3)	C9-C10	1.490 (3)
O4-C16	1.417 (3)		
C2-O2-C8	117.2 (2)	C5-C6-C7	118.6 (2)
C13-O4-C16	118.1 (2)	N1-C7-C6	122.6 (2)
C7-N1-N2	114.5 (2)	O3-C9-N2	122.1 (2)
C9-N2-N1	120.3 (2)	O3-C9-C10	121.2 (2)
O1-C1-C2	116.8 (2)	N2-C9-C10	116.7 (2)
O1-C1-C6	123.9 (2)	C15-C10-C9	117.6 (2)
O2-C2-C1	114.3 (2)	C11-C10-C9	124.9 (2)
O2-C2-C3	125.4 (2)	O4-C13-C12	116.0 (2)
C1-C6-C7	122.2 (2)	O4-C13-C14	124.7 (2)

Figure 2

POV-Ray (Cason, 2002)/ORTEPII (Johnson, 1976) plot of the hydrogenbonded layer structure, viewed along the a axis.

Table 2Hydrogen-bonding geometry (Å, °).

$D = \Pi$	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D - H \cdots A$
0.85(1)	1.96 (2)	2.700 (2)	145 (3)
0.86(1)	2.33 (2)	3.067 (3)	145 (3)
0.86(1)	2.40 (3)	3.104 (3)	140 (4)
0.87(1)	1.84 (1)	2.701(2)	171 (3)
0.85 (1)	2.08 (1)	2.904 (3)	165 (2)
	$\begin{array}{c} 0.85 \ (1) \\ 0.86 \ (1) \\ 0.86 \ (1) \\ 0.87 \ (1) \\ 0.85 \ (1) \end{array}$	0.85 (1) 1.96 (2) 0.86 (1) 2.33 (2) 0.86 (1) 2.40 (3) 0.87 (1) 1.84 (1) 0.85 (1) 2.08 (1)	0.85 (1) 1.96 (2) 2.700 (2) 0.86 (1) 2.33 (2) 3.067 (3) 0.86 (1) 2.40 (3) 3.104 (3) 0.87 (1) 1.84 (1) 2.701 (2) 0.85 (1) 2.08 (1) 2.904 (3)

Symmetry codes: (i) 1 + x, y, z; (ii) $2 - x, \frac{1}{2} + y, \frac{3}{2} - z$.

The H atoms were placed in calculated positions [aromatic C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. Those of the methoxy groups were rotated to fit the electron density [C–H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$]. The H atoms were included in the refinements in the riding-model approximation. The water and amino H atoms were located and refined with distance restraints of O–H = N–H = 0.85 (1) Å and H···H = 1.39 (1) Å. In the absence of significant anomalous dispersion effects, Friedel pair reflections were merged before the final refinement.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976) and *POV-Ray* (Cason, 2002); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and the University of Malaya for supporting this study.

References

Cason, C. J. (2002). POV-Ray for Windows. Version 3.5. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.

Chen, W., Gao, S. & Liu, S.-X. (1999). *Acta Cryst.* C**55**, 531–533. Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). *Polyhedron*, **17**, 3595–3606. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.

- Huo, L.-H., Gao, S., Liu, J.-W., Li, J. & Ng, S. W. (2004). Acta Cryst. E60, m758–m760.
- Huo, L.-H., Gao, S., Liu, J.-W., Li, J., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m673–m675.
- Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606–m608.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Litvinov, A. I., Kataeva, O. N., Ermolaeva, L. V., Vagina, G. A., Troepol'skaya,
- T. V. & Naumov, V. A. (1991). Russ. Chem. Bull. 40, 62–67.
- Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81-84.
- Lyubchova, A., Cossé-Barbi, A., Doucet, J. P., Robert, F., Souron, J.-P. & Quarton, M. (1995). Acta Cryst. C51, 1893–1895.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC, 9009 New trails Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.