Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Methoxysalicylaldehyde 4-methoxybenzoylhydrazone monohydrate

Li-Hua Huo, ${ }^{\text {a }}$ Shan Gao, ${ }^{a}$ Hui

 Zhao, ${ }^{\text {a }}$ Jing-Gui Zhao, ${ }^{\text {a }}$ Sharifuddin M. Zain ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *${ }^{\text {a College of Chemistry and Chemical }}$ Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.102$
Data-to-parameter ratio $=9.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes as a monohydrate in which the water molecule forms bifurcated hydrogen bonds to the hydroxyl and methoxy O atoms of the methoxysalicyldehyde portion of the Schiff base. The molecule is approximately planar; hydrogen-bonding interactions involving the amino group and the water molecule give rise to a layer structure.

Comment

Hydroxy-substituted benzaldehyde reagents used for condensation with benzoylhydrazine afford Schiff base hydrazones which can function as terdentate ligands towards a number of metal cations (Gao et al., 1998; Liu \& Gao, 1998; Chen et al., 1999). In our studies on the title hydrazone, (I), we have isolated V^{5+} and Fe^{3+} complexes (Huo, Gao, Liu, Li \& Ng, 2004; Huo, Gao, Liu, Li, Zhao \& Zhao et al., 2004; Huo, Gao, Liu, Zhao \& Ng, 2004) in which the deprotonated 3methoxysalicylaldehyde 4-methoxybenzoylhydrazone entity chelates in this manner. This hydrazone crystallizes as a monohydrate (Fig. 1).

(I)

The hydrazone is essentially flat; the aromatic ring ($\mathrm{C} 10-$ C15) makes a dihedral angle of $5.1(5)^{\circ}$ with the $\mathrm{C} 9 / \mathrm{N} 2 / \mathrm{O} 3$ fragment. In the unsubstituted compound, viz. benzaldehyde benzoylhydrazone, the molecule is twisted with the dihedral angle between the corresponding ring and fragment being

Figure 1
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
23.6° (Litvinov et al., 1991). This feature is also noted in salicyldehydyde benzoylhydrazone (dihedral angle $=21.5^{\circ}$; Lyubchova et al., 1995). As geometry optimizations on (I) also implicate a twisted conformation, the observed planarity can be attributed to water molecules of crystallization, whose presence ensures that the molecules can be packed efficiently in a layer motif (Fig. 2). One of its H atoms engages in binding to two O atoms simultaneously (Table 2).

Experimental

An ethanol solution (25 ml) of 3-methoxysalicylaldehyde (6.04 g , 0.04 mol) was added dropwise to an ethanol solution (100 ml) of 4methoxybenzoylhydrazine $(6.44 \mathrm{~g}, 0.04 \mathrm{~mol})$. The mixture was refluxed for a hour to complete the condensation. Yellow crystals (m.p. 442-444 K) were isolated from the filtered solution after a few days. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 60.37, H 5.70, N 8.80\%; found: C 60.54, H 5.95 , N 8.61%.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=318.32$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.013$ (1) \AA 。
$b=12.733$ (3) A
$c=24.096$ (5) \AA
$V=1537.9(5) \AA^{3}$
$Z=4$
$D_{x}=1.375 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.830, T_{\max }=0.979$
14735 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 14318 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, yellow
$0.39 \times 0.26 \times 0.21 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.102$
$S=1.04$
2073 reflections
226 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.348(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.382(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.373(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.284(3)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.426(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.353(3)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.228(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.458(3)$
$\mathrm{O} 4-\mathrm{C} 13$	$1.367(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.490(3)$
$\mathrm{O} 4-\mathrm{C} 16$	$1.417(3)$		
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 8$	$117.2(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.6(2)$
$\mathrm{C} 13-\mathrm{O} 4-\mathrm{C} 16$	$118.1(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$122.6(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$114.5(2)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{N} 2$	$122.1(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$120.3(2)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10$	$121.2(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.8(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$116.7(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$123.9(2)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9$	$117.6(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$114.3(2)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$124.9(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$125.4(2)$	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{C} 12$	$116.0(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$122.2(2)$	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{C} 14$	$124.7(2)$

Figure 2
POV-Ray (Cason, 2002)/ORTEPII (Johnson, 1976) plot of the hydrogenbonded layer structure, viewed along the a axis.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 o \cdots \mathrm{~N} 1$	$0.85(1)$	$1.96(2)$	$2.700(2)$	$145(3)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1$	$0.86(1)$	$2.33(2)$	$3.067(3)$	$145(3)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2$	$0.86(1)$	$2.40(3)$	$3.104(3)$	$140(4)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots 3^{\mathrm{i}}$	$0.87(1)$	$1.84(1)$	$2.701(2)$	$171(3)$
$\mathrm{N} 2-\mathrm{H} 2 n \cdots \mathrm{O}^{\text {ii }}$		$0.85(1)$	$2.08(1)$	$2.904(3)$
(i)	$165(2)$			

Symmetry codes: (i) $1+x, y, z$; (ii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$.
The H atoms were placed in calculated positions [aromatic $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. Those of the methoxy groups were rotated to fit the electron density $\left[\mathrm{C}-\mathrm{H}=0.96 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.5 U_{\text {eq }}(\mathrm{C})\right]$. The H atoms were included in the refinements in the riding-model approximation. The water and amino H atoms were located and refined with distance restraints of $\mathrm{O}-\mathrm{H}=\mathrm{N}-\mathrm{H}=$ 0.85 (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$. In the absence of significant anomalous dispersion effects, Friedel pair reflections were merged before the final refinement.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and POV-Ray (Cason, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and the University of Malaya for supporting this study.

References

Cason, C. J. (2002). POV-Ray for Windows. Version 3.5. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.
Chen, W., Gao, S. \& Liu, S.-X. (1999). Acta Cryst. C55, 531-533.
Gao, S., Weng, Z.-Q. \& Liu, S.-X. (1998). Polyhedron, 17, 3595-3606. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

organic papers

Huo, L.-H., Gao, S., Liu, J.-W., Li, J. \& Ng, S. W. (2004). Acta Cryst. E60, m758m760.
Huo, L.-H., Gao, S., Liu, J.-W., Li, J., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m673-m675.
Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m606-m608.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Litvinov, A. I., Kataeva, O. N., Ermolaeva, L. V., Vagina, G. A., Troepol'skaya,
T. V. \& Naumov, V. A. (1991). Russ. Chem. Bull. 40, 62-67. Liu, S.-X. \& Gao, S. (1998). Polyhedron, 17, 81-84.
Lyubchova, A., Cossé-Barbi, A., Doucet, J. P., Robert, F., Souron, J.-P. \& Quarton, M. (1995). Acta Cryst. C51, 1893-1895.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New trails Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

